Issue 6, 2016

High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators

Abstract

Conductive fibers with enhanced physical properties and functionalities are needed for a diversity of electronic devices. Here, we report very high performance in the thermal and mechanical response of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) microfibers when subjected to an electrical current. These fibers were made by combining the hot-drawing assisted wetspinning process with ethylene glycol doping/de-doping that can work at a current density as high as 1.8 × 104 A cm−2, which is comparable to that of carbon nanotube fibers. Their electrothermal response was investigated using optical sensors and verified to be as fast as 63 °C s−1 and is comparable with that of metallic heating elements (20–50 °C s−1). We investigated the electromechanical actuation resulted from the reversible sorption/desorption of moisture controlled by electro-induced heating. The results revealed an improvement of several orders of magnitudes compared to other linear conductive polymer-based actuators in air. Specifically, the fibers we designed here have a rapid stress generation rate (>40 MPa s−1) and a wide operating frequency range (up to 40 Hz). These fibers have several characteristics including fast response, low-driven voltage, good repeatability, long cycle life and high energy efficiency, favoring their use as heating elements on wearable textiles and as artificial muscles for robotics.

Graphical abstract: High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2015
Accepted
03 Jan 2016
First published
04 Jan 2016

J. Mater. Chem. C, 2016,4, 1238-1249

Author version available

High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators

J. Zhou, M. Mulle, Y. Zhang, X. Xu, E. Q. Li, F. Han, S. T. Thoroddsen and G. Lubineau, J. Mater. Chem. C, 2016, 4, 1238 DOI: 10.1039/C5TC03380B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements