Jump to main content
Jump to site search

Issue 14, 2016
Previous Article Next Article

The impact of electrostatic interactions on ultrafast charge transfer at Ag29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

Author affiliations

Abstract

A profound understanding of charge transfer (CT) at semiconductor quantum dots (QDs) and nanoclusters (NCs) interfaces is extremely important to optimize the energy conversion efficiency in QDs and NCs-based solar cell devices. Here, we report on the ground- and excited-state interactions at the interface of two different bimolecular non-covalent donor–acceptor (D–A) systems using steady-state and femtosecond transient absorption (fs-TA) spectroscopy with broadband capabilities. We systematically investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum dots (QDs). For comparison purposes, we also monitor the interaction of each donor molecule with the neutral fullerene derivative C60-(malonic acid)n, which has minimal electrostatic interactions. Our steady-state and time-resolved data demonstrate that both QDs and NCs have strong interfacial electrostatic interactions and dramatic fluorescence quenching when the CF derivative is present. In other words, our results reveal that only CF can be in close molecular proximity with the QDs and NCs, allowing ultrafast photoinduced CT to occur. It turned out that the intermolecular distances, electronic coupling and subsequently CT from the excited QDs or NCs to fullerene derivatives can be controlled by the interfacial electrostatic interactions. Our findings highlight some of the key variable components for optimizing CT at QDs and NCs interfaces, which can also be applied to other D–A systems that rely on interfacial CT.

Graphical abstract: The impact of electrostatic interactions on ultrafast charge transfer at Ag29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Sep 2015, accepted on 09 Nov 2015 and first published on 09 Nov 2015


Article type: Paper
DOI: 10.1039/C5TC02927A
Citation: J. Mater. Chem. C, 2016,4, 2894-2900
  •   Request permissions

    The impact of electrostatic interactions on ultrafast charge transfer at Ag29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    G. H. Ahmed, M. R. Parida, A. Tosato, L. G. AbdulHalim, A. Usman, Q. A. Alsulami, B. Murali, E. Alarousu, O. M. Bakr and O. F. Mohammed, J. Mater. Chem. C, 2016, 4, 2894
    DOI: 10.1039/C5TC02927A

Search articles by author

Spotlight

Advertisements