Issue 47, 2016

Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier

Abstract

Organic–inorganic lead halide perovskite solar cells (PSCs) with TiO2-based architectures have emerged for highly efficient photovoltaic conversion in recent years, while their serious light soaking instability limits their practical applications. Here, we have successfully introduced fullerene [6,6]-phenyl-C61-butyric acid 2-((2-(dimethylamino)ethyl)(methyl)-amino)-ethyl ester (PCBDAN) as an interfacial modifier for the TiO2 electron transport layer (ETL) in planar PSCs, which can significantly improve the photovoltaic conversion efficiency and light soaking stability of the devices. The quality of the perovskite film and electron extraction efficiency between the perovskite and ETL are both improved by introducing the PCBDAN interfacial layer. An improved power conversion efficiency (PCE) of 16.78% can be obtained for the device with PCBDAN under AM 1.5G illumination (100 mW cm−2). And the light soaking stability of the planar device is greatly improved after modification. This work provides a feasible way by interfacial modification for the realization of highly efficient devices without light-soaking degradation.

Graphical abstract: Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2016
Accepted
27 Oct 2016
First published
27 Oct 2016

J. Mater. Chem. A, 2016,4, 18509-18515

Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier

Y. Zhang, P. Wang, X. Yu, J. Xie, X. Sun, H. Wang, J. Huang, L. Xu, C. Cui, M. Lei and D. Yang, J. Mater. Chem. A, 2016, 4, 18509 DOI: 10.1039/C6TA08992E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements