A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors†
Abstract
Herein, we report a multitasking Cu-MOF/rGO hybrid, fabricated by simple ultra-sonication of slow diffusion driven Cu-MOF crystals with chemically synthesized reduced graphene oxide (rGO). The molecular structure of the Cu-MOF was authenticated by single crystal X-ray studies. The prepared materials have been probed by various physicochemical characterization techniques. Due to the positive synergistic effects between Cu-MOF crystals and rGO nanosheets, the newly synthesized Cu-MOF/rGO hybrid delivers high charge storage efficiency (685.33 F g−1 at 1.6 A g−1), high energy (137.066 W h kg−1) and power density (4800.04 W kg−1) and excellent rate ability (retains 71.01% of its initial capacitance at 8 A g−1). Furthermore, the long cycle life (91.91% after 1000 cycles) of this hybrid indicates its high stability on the electrode surface. Additionally, the electrode modified with the Cu-MOF/rGO hybrid performs exceptionally towards the electrochemical detection of nitrite in a wide dynamic linear range of 3–40 000 μM (R2 = 0.99911), with a notable detection limit of 33 nm and a high sensitivity of 43.736 μA μM−1 cm−2. The versatility of the Cu-MOF/rGO modified electrode can be observed by distinguished selectivity in the presence of some common interfering species and also ability to detect nitrite in real samples.
Please wait while we load your content...