Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 18, 2016
Previous Article Next Article

First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition

Author affiliations

Abstract

As our reliance on renewable energy resources increases, so will our need to store this energy in the form of chemical fuels to iron-out peaks and troughs in supply. Sunlight, the most plentiful source of renewable energy, is especially problematic in this regard as it is so diffuse. One way to convert solar irradiation to fuels effectively would be to develop large surface area photo-electrochemical devices that could use sunlight directly to split water into H2 and O2. However, in order to be feasible, such an approach requires that these devices (and their components) are extremely cheap. In this review, we will discuss catalysts for the water oxidation half-reaction of electrochemical water splitting that can be produced by electrodeposition (a technique well suited to large-scale, low-cost applications), and that are based on the comparatively plentiful and inexpensive first row transition metals. Special attention will be paid to the electrodeposition conditions used in the various examples given, and structure–function relationships for electrochemical water oxidation for the materials produced by these techniques will be elucidated.

Graphical abstract: First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition

Back to tab navigation

Article information


Submitted
20 Nov 2015
Accepted
13 Jan 2016
First published
13 Jan 2016

J. Mater. Chem. A, 2016,4, 6724-6741
Article type
Review Article
Author version available

First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition

I. Roger and M. D. Symes, J. Mater. Chem. A, 2016, 4, 6724
DOI: 10.1039/C5TA09423B

Social activity

Search articles by author

Spotlight

Advertisements