Issue 12, 2016

Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications

Abstract

The present low yielding growth techniques of semiconducting 2H phase molybdenum disulfide (MoS2) hamper its widespread applications. In this article, we report a novel hydrothermal chemical approach to synthesize micron sized few layer 2H-MoS2 on a large scale. Sodium molybdate and ammonium thiocyanate have been used as precursors to obtain template-free 2H-MoS2 in solution. Detailed microscopic and spectroscopic characterizations reveal that the bottom-up synthesized few layer MoS2 flakes are highly crystalline having the hexagonal 2H phase. Photodetector devices comprising a p-type silicon (p-Si)/n-MoS2 heterostructure have been fabricated for the first time using solution processed 2H-MoS2 synthesized by the bottom up approach. The heterojunction diode exhibits a high rectification ratio (>103) with broad band photoresponse over the visible range. Because of the visible light photoresponse, as-synthesized MoS2 along with reduced graphene oxide (MoS2–RGO hybrids) have been utilized to study the potential of this two dimensional (2D) heterostructure for visible light driven photocatalytic Rhodamine B dye degradation. This study demonstrates the potential of solution processed MoS2 for integration with silicon and growth of 2D heterostructures for visible light induced multifunctional applications.

Graphical abstract: Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2015
Accepted
17 Feb 2016
First published
22 Feb 2016

J. Mater. Chem. A, 2016,4, 4534-4543

Author version available

Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications

A. Midya, A. Ghorai, S. Mukherjee, R. Maiti and S. K. Ray, J. Mater. Chem. A, 2016, 4, 4534 DOI: 10.1039/C5TA09003B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements