Issue 39, 2016

Fracture toughness of hydrogels: measurement and interpretation

Abstract

The fracture mechanics of hydrogels, especially those with significantly enhanced toughness, has attracted extensive research interests. In this article we discuss the experimental measurement and theoretical interpretation of the fracture toughness for soft hydrogels. We first review the definition of fracture toughness for elastic materials, and the commonly used experimental configurations to measure it. In reality most gels are inelastic. For gels that are rate insensitive, we discuss how to interpret the fracture toughness associated with two distinct scenarios: crack initiation and steady-state crack propagation. A formulation to estimate energy dissipation during steady-state crack propagation is developed, and connections to previous models in the literature are made. For gels with rate-dependent behaviors, we review the physical mechanisms responsible for the rate-dependence, and outline the difficulties to rigorously define the fracture toughness for both crack initiation and propagation. We conclude by discussing a few fundamental questions on the fracture of tough gels that are yet to be answered.

Graphical abstract: Fracture toughness of hydrogels: measurement and interpretation

Article information

Article type
Review Article
Submitted
24 Jul 2016
Accepted
11 Sep 2016
First published
12 Sep 2016

Soft Matter, 2016,12, 8069-8086

Fracture toughness of hydrogels: measurement and interpretation

R. Long and C. Hui, Soft Matter, 2016, 12, 8069 DOI: 10.1039/C6SM01694D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements