Structural entropy of glassy systems from graph isomorphism
Abstract
Configurational entropy plays a central role in thermodynamic scenarios of the glass transition. As a measure of the number of basins in the potential energy landscape, configurational entropy for a glass-forming liquid can be evaluated by explicitly counting distinct inherent structures. In this work, we propose a graph-theory based method to examine local structure and obtain the corresponding entropy of hard-particle systems. Voronoi diagrams of associated clusters are classified using a graph isomorphism algorithm. The statistics of these clusters reveal structural motifs such as icosahedron-like order, and also allow us to calculate the structural entropy SG. We find the structural entropy of an n-particle subsystem grows linearly with n. Thus the structural entropy per particle can be obtained from the slope dSG/dn. Our results are consistent with previous values for configurational entropy obtained via thermodynamic integration. Structural entropies per particle are measured for hard-disk and hard-sphere polydisperse systems, and extrapolated for monodisperse hard disks, all of which are nonzero at the dynamic glass transition.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        