Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates
Abstract
Shape programmable materials capable of morphing from a flat sheet into controlled three dimensional (3D) shapes offer promise in diverse areas including soft robotics, tunable optics, and bio-engineering. We describe a simple method of ‘grayscale gel lithography’ that relies on a digital micromirror array device (DMD) to control the dose of ultraviolet (UV) light, and therefore the extent of swelling of a photocrosslinkable poly(N-isopropyl acrylamide) (PNIPAm) copolymer film, with micrometer-scale spatial resolution. This approach allows for effectively smooth profiles of swelling to be prescribed, enabling the preparation of buckled 3D shapes with programmed Gaussian curvature.

Please wait while we load your content...