Jump to main content
Jump to site search

Issue 29, 2016
Previous Article Next Article

The stabilizing effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows

Author affiliations

Abstract

We determine both experimentally and numerically the onset of elastic flow instabilities in viscoelastic polymer solutions with different levels of shear thinning. Previous experiments realized in microfluidic serpentine channels using dilute polymeric solutions showed that the onset of elastic instabilities strongly depends on the channel curvature. The scaling dependence is well captured by the general instability scaling criterion proposed by Pakdel and McKinley [Phys. Rev. Lett., 1996, 76, 2459:1–4]. We determine here the influence of fluid shear thinning on the onset of such purely-elastic flow instabilities. By testing a set of polyethylene oxide solutions of high molecular weight at different polymer concentrations in microfluidic serpentine channels we observe that shear thinning has a stabilizing effect on the microfluidic flow. Three-dimensional numerical simulations performed using the White–Metzner model predict similar trends, which are not captured by a simple scaling analysis using the Pakdel–McKinley criterion.

Graphical abstract: The stabilizing effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Feb 2016, accepted on 16 May 2016 and first published on 17 May 2016


Article type: Paper
DOI: 10.1039/C6SM00326E
Soft Matter, 2016,12, 6167-6175
  • Open access: Creative Commons BY license
  •   Request permissions

    The stabilizing effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows

    L. Casanellas, M. A. Alves, R. J. Poole, S. Lerouge and A. Lindner, Soft Matter, 2016, 12, 6167
    DOI: 10.1039/C6SM00326E

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements