A completely controlled sphere-to-bilayer micellar transition: the molecular mechanism and application on the growth of nanosheets
Abstract
The combination of a simple modification of the sample addition method to generate a sort of continuously accumulated external stimulation with only minute increments in amplitude and the introduction of probe molecules (herein aniline) within the micelle allow the direct continuous in situ spectroscopic monitoring of possible micellar transitions. In this way, a sphere-to-ellipsoid and further an ellipsoid-to-bilayer micellar transition of sodium dodecyl sulfate (SDS) induced by camphor sulfuric acid (CSA) is observed to experience four stages in the time sequence: (i) the accumulated protons released from CSA in the hydration layer of the micelle stimulate the rearrangement of SDS micelles; (ii) the micelles transform into ellipsoidal shapes as evidenced by the characteristic chemical shift anisotropy and the corresponding molecular dynamic properties from probe molecules; (iii) further protonation of aniline induces the micelle to turn into lamellar structures; (iv) aniline is freed from the micelle while leaving the SDS bilayers undistorted. Moreover, polyaniline nanosheets incorporating SDS bilayers in sandwich structures, which can display excellent capacitive behavior at relatively high current densities for the fabricated supercapacitors, are prepared from the aniline oriented by the bending energy of the SDS bilayers.