Jump to main content
Jump to site search

Issue 7, 2016
Previous Article Next Article

Near-post meniscus-induced migration and assembly of bubbles

Author affiliations

Abstract

Although the effect of interfacial tension of liquids is often negligible at the macroscale, it plays an essential role in areas such as superhydrophobicity on rough surfaces, water walking of aquatic creatures and self-assembly of small particles or droplets. In this study, we investigate the migration and assembly of bubbles near the meniscus produced by a slender post with various cross-sections. The results show that the bubble always migrates to the solid wall of the post, although the cross-section shape, material and tilt angle of the post are different. In particular, the final position of the bubble is not located at the singular point of the cross-section, which is beyond what we have imagined. We simulate the morphology of the triple contact line via Surface Evolver, and then address the mechanism of bubble's migration from the viewpoint of force analysis and energy calculation. The factors governing the final position of the bubble are analyzed according to the scaling law. These obtained results cast new light on modulating the assembly of bubbles and small droplets by varying the material, geometric shape and posture of the post in water. These findings also have important implications for oil collection and oil displacement in petroleum engineering, drug delivery, design of microfluidic devices and chemical sensors.

Graphical abstract: Near-post meniscus-induced migration and assembly of bubbles

Back to tab navigation

Article information


Submitted
16 Nov 2015
Accepted
18 Dec 2015
First published
24 Dec 2015

Soft Matter, 2016,12, 2221-2230
Article type
Paper
Author version available

Near-post meniscus-induced migration and assembly of bubbles

J. Liu, S. Li and J. Hou, Soft Matter, 2016, 12, 2221
DOI: 10.1039/C5SM02809D

Social activity

Search articles by author

Spotlight

Advertisements