Issue 5, 2016

Dynamics of colloids confined in microcylinders

Abstract

We studied both global and local effects of cylindrical confinement on the diffusive behavior of hard sphere (HS) colloids. Using confocal scanning laser microscopy (CSLM) and particle tracking, we measured the mean squared displacement (MSD) of 1 micron sized silica particles in water–glycerol. This combination of fluid and setup allowed us to measure MSDs in a 4-dimensional parameter space, defined by the HS volume fraction (Φ: 0.05–0.39), cylinder radius (R: 2.5–20 micron), distance to the wall (z) and lagtime (τ: 0.03–60 s). MSDs for the entire cylinder confirm earlier findings that both narrowing the cylinder and populating it cause a slower dynamics. Additionally a decrease in R was found to cause a stronger ordering of the fluid. The effect of confinement on dynamics was further examined as a function of (z) location. For the largest cylinder (with minor curvature), we found that the strong decrease in MSD near the wall, becomes much less pronounced for higher Φ. Analyzing the radial (r) and azimuthal (θ) components, we found pronounced differences in the z-dependence that were ‘hidden’ in the total MSD. Near the wall, the r-MSD shows a much steeper z-dependence while at larger z, it shows a remarkable anti-correlation with the (peaked) density n(z). Also the dependence of the r-MSD on lagtime correlates with n(z): diffusive in between layers, but subdiffusive inside layers. These observations bring earlier findings together, while also shedding new light on the diffusive dynamics of concentrated colloids in narrow capillaries.

Graphical abstract: Dynamics of colloids confined in microcylinders

Article information

Article type
Paper
Submitted
18 Oct 2015
Accepted
24 Nov 2015
First published
25 Nov 2015

Soft Matter, 2016,12, 1621-1630

Author version available

Dynamics of colloids confined in microcylinders

S. Ghosh, D. Wijnperlé, F. Mugele and M. H. G. Duits, Soft Matter, 2016, 12, 1621 DOI: 10.1039/C5SM02581H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements