Jump to main content
Jump to site search

Issue 1, 2016
Previous Article Next Article

Transition voltages respond to synthetic reorientation of embedded dipoles in self-assembled monolayers

Author affiliations

Abstract

We studied the influence of embedded dipole moments in self-assembled monolayers (SAMs) formed on template stripped Au surfaces with liquid eutectic Ga–In alloy as a top electrode. We designed three molecules based on a p-terphenyl structure in which the central aromatic ring is either phenyl or a dipole-inducing pyrimidyl in one of two different orientations. All three form well defined SAMs with similar thickness, packing density and tilt angle, with dipole moments embedded in the SAM, isolated from either interface. The magnitude of the current density is dominated by the tunneling distance and is not affected by the presence of dipole moments; however, transition voltages (VT) show a clear linear correlation with the shift in the work function of Au induced by the collective action of the embedded dipoles. This observation demonstrates that VT can be manipulated synthetically, without altering either the interfaces or electrodes and that trends in VT can be related to experimental observables on the SAMs before installing the top contact. Calculated projected density of states of the SAMs on Au surfaces that relate HOMO-derived states to VT further show that energy level alignment within an assembled junction can be predicted and adjusted by embedding dipoles in a SAM without altering any other properties of the junction. We therefore suggest that trends in VT can be used analogously to β in systems for which length-dependence is physically or experimentally inaccessible.

Graphical abstract: Transition voltages respond to synthetic reorientation of embedded dipoles in self-assembled monolayers

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Aug 2015, accepted on 17 Oct 2015 and first published on 22 Oct 2015


Article type: Edge Article
DOI: 10.1039/C5SC03097H
Author version
available:
Download author version (PDF)
Citation: Chem. Sci., 2016,7, 781-787
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Transition voltages respond to synthetic reorientation of embedded dipoles in self-assembled monolayers

    A. Kovalchuk, T. Abu-Husein, D. Fracasso, D. A. Egger, E. Zojer, M. Zharnikov, A. Terfort and R. C. Chiechi, Chem. Sci., 2016, 7, 781
    DOI: 10.1039/C5SC03097H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements