Issue 98, 2016, Issue in Progress

An efficient method for tylosin removal from an aqueous solution by goethite modified straw mass

Abstract

Renewable agricultural residues are produced in large quantities as waste, and their storage and management create environmental problems. Similarly, antibiotics could cause harm to the ecosystem and to the growth of plants and animals. As one of the widely used antibiotics in the world, the environmental risks of tylosin (TYL) are receiving increasing attention. In order to find a clean and effective method for TYL removal from an aqueous solution, maize straw (MS) is modified by goethite and the sorption capacity of the natural and modified forms (MSF) is determined for TYL removal. The characterisations of MS and MSF were carried out by XRD, FTIR, XPS and SEM-EDS. The characteristics of the sorption behavior of TYL on MS and MSF are systematically investigated. The results indicate that the sorption capacity of TYL on MSF is significantly higher than MS, and the sorption kinetics data of TYL on MS and MSF well fits the pseudo-second-order kinetics model and the sorption isotherms data well fits the linear model. Moreover, the sorption thermodynamics of TYL on MSF and MS indicate that a high temperature could favor the sorption of TYL on MS and MSF. In addition, the sorption of TYL on MS and MSF can be affected by pH and ionic strength of the solution. The sorption mechanisms of TYL on MS mainly involve electrostatic interactions and hydrophobic interactions, whereas electrostatic interactions, H bonding, hydrophobic interactions and surface complexation play a primal role in the sorption of TYL on MSF.

Graphical abstract: An efficient method for tylosin removal from an aqueous solution by goethite modified straw mass

Article information

Article type
Paper
Submitted
28 Jul 2016
Accepted
22 Sep 2016
First published
23 Sep 2016

RSC Adv., 2016,6, 95425-95434

An efficient method for tylosin removal from an aqueous solution by goethite modified straw mass

Y. Yin, X. Guo, C. Yang, L. Gao and Y. Hu, RSC Adv., 2016, 6, 95425 DOI: 10.1039/C6RA19172J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements