Issue 85, 2016, Issue in Progress

Ammonia and iron cointercalated iron sulfide (NH3)Fe0.25Fe2S2: hydrothermal synthesis, crystal structure, weak ferromagnetism and crossover from a negative to positive magnetoresistance

Abstract

The discovery of superconductivity in anti-PbO-type FeS has aroused a renewed interest in the intercalation compounds of FeS. Here we report a novel intercalation compound of FeS with the chemical composition of (NH3)Fe0.25Fe2S2, which is synthesized via a new hydrothermal reaction. This material crystallizes in the tetragonal space group I4/mmm, preserving the FeS tetrahedral layers with ammonia and excess iron forming planes in between. The microstructure and thermal stability of the sample were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analyses (TGA). These results suggest that (NH3)Fe0.25Fe2S2 is not sensitive to electron beam irradiation and is more thermally stable than the other ammonia intercalated iron selenide superconductors. Physical property measurements show that it is a ferromagnetic semiconductor. By using first-principles calculations we assess that the low-temperature ferromagnetism originates from the interlayer rather than the intralayer iron. The transport properties at low temperatures are dominated by electron-like carriers and the sign reversal and strong temperature dependence of the Hall coefficient may be caused by a multi-band effect. Most importantly, an unusual crossover from negative to positive magnetoresistance with increasing temperature was identified, which reveals relatively strong coupling between carriers and magnetic moments as well as disorder.

Graphical abstract: Ammonia and iron cointercalated iron sulfide (NH3)Fe0.25Fe2S2: hydrothermal synthesis, crystal structure, weak ferromagnetism and crossover from a negative to positive magnetoresistance

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2016
Accepted
18 Aug 2016
First published
19 Aug 2016

RSC Adv., 2016,6, 81886-81893

Ammonia and iron cointercalated iron sulfide (NH3)Fe0.25Fe2S2: hydrothermal synthesis, crystal structure, weak ferromagnetism and crossover from a negative to positive magnetoresistance

X. Lai, Z. Lin, K. Bu, X. Wang, H. Zhang, D. Li, Y. Wang, Y. Gu, J. Lin and F. Huang, RSC Adv., 2016, 6, 81886 DOI: 10.1039/C6RA17568F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements