Issue 82, 2016

Effects of organosolv fractionation time on thermal and chemical properties of lignins

Abstract

Organosolv fractionation is a promising pathway to separate cellulosic biomass into high purity cellulose, hemicelluloses, and lignin. This work specifically investigates the properties of lignins isolated at specific time points as fractionation progressed, with the intent of correlating fractionation time with lignin purity, yield, thermal and chemical properties. Yellow poplar (Liriodendron tulipifera) was fractionated using a mixture of methyl isobutyl ketone, ethanol, and water with sulfuric acid as catalyst at 140 °C over a two-hour period. Aliquots of the liquor were collected by sampling every 15 min during the fractionation to generate a series of lignins. The results showed that with increased fractionation time, lignin purity improved from 90.3 to 94.6% and the glass transition temperature increased from 117 to 137 °C. The loss of aliphatic OH and increase of phenolic OH with fractionation time led to an increase in condensed structures and increased polydispersity at times greater than 90 min. Principal component analysis of Fourier transform infrared spectroscopic data confirmed the shift to higher purity and more condensed chemical structures with increasing fractionation time. Overall, this study demonstrates that thermal and chemical properties of lignin change with the organosolv fractionation time.

Graphical abstract: Effects of organosolv fractionation time on thermal and chemical properties of lignins

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2016
Accepted
10 Aug 2016
First published
10 Aug 2016

RSC Adv., 2016,6, 79228-79235

Effects of organosolv fractionation time on thermal and chemical properties of lignins

J. Tao, O. Hosseinaei, L. Delbeck, P. Kim, D. P. Harper, J. J. Bozell, T. G. Rials and N. Labbé, RSC Adv., 2016, 6, 79228 DOI: 10.1039/C6RA16296G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements