Jump to main content
Jump to site search

Issue 76, 2016, Issue in Progress
Previous Article Next Article

Microsolvation of NO3: structural exploration and bonding analysis

Author affiliations


Exploration of the potential energy surfaces (PESs) of various microsolvated species associated with the microsolvation of the nitrate anion using density functional theory methods uncovers a rich and complex structural diversity previously unnoticed in the scientific literature for the [NO3(H2O)n], n = 1–6 clusters. Two types of interactions are at play in stabilizing the clusters: traditional water to water and charge assisted nitrate to water hydrogen bonds (HBs). The formal negative charge on oxygen atoms in nitrate strengthens hydrogen bonding among water molecules. There is outstanding agreement between available experimental data (sequential hydration enthalpies, IR spectra, and vertical detachment energies) and the corresponding expectation values obtained from our structures. Each PES is heavily populated in the vicinities of the corresponding global minimum with multiple structures contributing to the experimental properties. The last two statements, in conjunction with results from other works (see for example Phys. Chem. Chem. Phys. 2014, 16, 19241) place a warning on the generalized and naive practice of assigning experimental observations to individual structures.

Graphical abstract: Microsolvation of NO3−: structural exploration and bonding analysis

Back to tab navigation

Supplementary files

Article information

09 Jun 2016
16 Jul 2016
First published
21 Jul 2016

RSC Adv., 2016,6, 71913-71923
Article type

Microsolvation of NO3: structural exploration and bonding analysis

E. Flórez, N. Acelas, C. Ibargüen, S. Mondal, J. L. Cabellos, G. Merino and A. Restrepo, RSC Adv., 2016, 6, 71913
DOI: 10.1039/C6RA15059D

Social activity

Search articles by author