Issue 69, 2016, Issue in Progress

Lithiation-driven structural transition of VO2F into disordered rock-salt LixVO2F

Abstract

We synthesize a new vanadium oxyfluoride VO2F (rhombohedral, R[3 with combining macron]c) through a simple one-step ball-milling route and demonstrate its promising lithium storage properties with a high theoretical capacity of 526 mA h g−1. Similar to V2O5, VO2F transfers into an active disordered rock-salt (Fm[3 with combining macron]m) phase after initial cycling against the lithium anode, as confirmed by diffraction and spectroscopic experiments. The newly formed nanosized LixVO2F remains its crystal structure over further cycling between 4.1 and 1.3 V. A high capacity of 350 mA h g−1 at 2.5 V was observed at 25 °C and 50 mA g−1. Furthermore, superior performance was observed for VO2F in comparison with a commercial crystalline V2O5, in terms of discharge voltage, voltage hysteresis and reversible capacity.

Graphical abstract: Lithiation-driven structural transition of VO2F into disordered rock-salt LixVO2F

Article information

Article type
Paper
Submitted
01 Jun 2016
Accepted
02 Jul 2016
First published
04 Jul 2016

RSC Adv., 2016,6, 65112-65118

Lithiation-driven structural transition of VO2F into disordered rock-salt LixVO2F

R. Chen, E. Maawad, M. Knapp, S. Ren, P. Beran, R. Witter and R. Hempelmann, RSC Adv., 2016, 6, 65112 DOI: 10.1039/C6RA14276A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements