Experimental and theoretical study on the reactivity of maghemite doped with Cu2+ in oxidation reactions: structural and thermodynamic properties towards a Fenton catalyst
Abstract
In this work, a polymeric method was used to prepare undoped and Cu-doped iron oxide catalysts for the H2O2 decomposition reaction. These catalysts were characterized by powder X-ray diffractometry (XRD), scanning electronic microscopy (SEM) coupled to an energy dispersive X-ray spectrometer (EDX), and H2-Temperature Programmed Reduction (H2-TPR). The SEM images show an inhomogeneous particle cluster in both samples, tending to decrease in size with Cu-doping. EDX mapping reveals a good dispersion of Cu2+ in the iron oxide. In addition, Rietveld refinement of the XRD patterns reveals that the samples are constituted of hematite and maghemite, but only maghemite has octahedral Fe3+ ions isomorphically replaced by 2 wt% Cu2+. Cu-doping produces an active catalyst for H2O2 decomposition. Tests using phenol show the strong inhibition of H2O2 decomposition by the Cu-doped catalysts, suggesting that H2O2 may be decomposed via a radical mechanism. Furthermore, phenol degradation kinetics confirm that the doping of maghemite with Cu2+ brings about a significant improvement in catalytic activity. Theoretical calculations reveal that Cu-doping in maghemite produces low electronic density sites, favoring the interactions between the surface oxygens of H2O2 and Cu2+, thus improving the catalytic activity. This strategy can be extended to other materials to design active heterogeneous catalysts for environmental purposes.