Issue 58, 2016, Issue in Progress

Carboxyfullerene decorated titanium dioxide nanomaterials for reactive oxygen species scavenging activities

Abstract

Titanium dioxide nanomaterials offer superior protection for human skin against ultraviolet light. However, some reports have indicated that they might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) under UV-irradiation due to their nanoscale size. The surfaces of fullerenes are covered with π electrons, constituting aromatic structures, which can effectively scavenge large amounts of radicals. Unfortunately, their poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed limitations on the use of fullerenes. Herein, we used carboxyfullerene as a radical scavenger to improve poor solubility. The modified materials were prepared through the esterification of C70-COOH with TNR (TNR/C70-COOH) and P25 (P25/C70-COOH). The structures and the properties were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM). In order to investigate the scavenging radical abilities of TiO2 composites, pyridoxine (Vit. B6), nitroblue tetrazolium (NBT) and terephthalic acid (TA) were chosen to react with singlet oxygen, superoxide ions and hydroxyl radicals, respectively. The results show that both types of TiO2 composites could reduce the ROS in the environment and exhibit great potential in anti-oxidative and anti-inflammation applications.

Graphical abstract: Carboxyfullerene decorated titanium dioxide nanomaterials for reactive oxygen species scavenging activities

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2016
Accepted
16 May 2016
First published
17 May 2016

RSC Adv., 2016,6, 53025-53033

Carboxyfullerene decorated titanium dioxide nanomaterials for reactive oxygen species scavenging activities

K. Yang, J. Zheng, Y. Chen, K. Lee and E. Cho, RSC Adv., 2016, 6, 53025 DOI: 10.1039/C6RA09414G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements