The precise and rapid diagnosis of malaria is key to prevent indiscriminate use of antimalarial drugs and help in timely treatment and management of the disease. This paper reports a label-free detection of P. falciparum infected red blood cells using a gold nanoparticle (GNP) enhanced platform. The GNPs were electrodeposited on screen-printed electrodes to form a well-controlled matrix that served the dual role of antibody immobilization and signal enhancement. The detection of infected red blood cells was carried out by measuring changes in electrical parameters as a result of its binding to cell reactive antibodies immobilized on the electrode. The assay showed good sensitivity and a linear response between the electron transfer resistance and the logarithm of the number of infected red blood cells which was observed over a concentration range of 102 cells per mL to 108 cells per mL. This is the first report where an antibody-functionalized electrochemical biosensing platform has been employed for the quantitative detection of P. falciparum infected whole red blood cells.