Issue 61, 2016

Tuning the electronic structure of graphene through nitrogen doping: experiment and theory

Abstract

Tuning the electronic properties of graphene by doping atoms into its lattice makes it more applicable for electronic devices. We present a study of nitrogen doped graphene samples grown using chemical vapor deposition with a variety of synthesis conditions. Soft X-ray absorption and emission spectroscopy, which are techniques sensitive to the unoccupied and occupied partial electronic density of states, respectively, were used to study the electronic structure of N-doped graphene. Complementary full-potential, all-electron density functional theory calculations of the measured spectra reveal the existence of graphitic, pyridinic and nitrilic-like sites in the samples studied. Although our study shows that the defect type is sensitively related to the synthesis conditions, the graphitic configuration is found to be the most dominant one in each system studied. The dependence of the defect type on the sample growth conditions and the corresponding shifts in the Fermi energy level from the Dirac point, result in n- or p-type material being obtained.

Graphical abstract: Tuning the electronic structure of graphene through nitrogen doping: experiment and theory

Article information

Article type
Paper
Submitted
22 Mar 2016
Accepted
05 Jun 2016
First published
14 Jun 2016

RSC Adv., 2016,6, 56721-56727

Tuning the electronic structure of graphene through nitrogen doping: experiment and theory

N. Ketabi, T. de Boer, M. Karakaya, J. Zhu, R. Podila, A. M. Rao, E. Z. Kurmaev and A. Moewes, RSC Adv., 2016, 6, 56721 DOI: 10.1039/C6RA07546K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements