Issue 48, 2016, Issue in Progress

Role of interfacial interactions to control the extent of wrapping of polymer chains on multi-walled carbon nanotubes

Abstract

A novel method has been developed to establish an enhanced interfacial interaction between polypropylene (PP) and multi-walled carbon nanotubes (MWCNTs) via interfacial engineering. MWCNTs were separated via a hot vacuum filtration technique from a melt-mixed PP/MWCNTs composite containing pristine MWCNTs or the Li-salt of 6-amino hexanoic acid (Li-AHA) modified MWCNTs with a polymeric compatibilizer (polypropylene-g-maleic anhydride; PP-g-MA). Transmission electron microscopic observation suggested the presence of thicker polymer wrapping on the MWCNT surface. Various spectroscopic techniques; viz.; solid state nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy could unequivocally support the presence of adhered PP chains on the MWCNT surface. Further, differential scanning calorimetry and wide angle X-ray diffraction analysis suggested the presence of the crystallizable PP chains on the MWCNT surface. Thermo-gravimetric analysis showed an increase in the residual weight at 500 °C for the separated MWCNT indicating the formation of an ‘interphase’. A decrease in the DC electrical conductivity was observed in the compacted pellet of the separated MWCNTs of the Li-AHA modified MWCNTs with PP-g-MA indicating the presence of insulating polymer chains on the MWCNT surface. The role of interfacial interactions in the formation of the ‘interphase' was demonstrated via various characterization techniques.

Graphical abstract: Role of interfacial interactions to control the extent of wrapping of polymer chains on multi-walled carbon nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2016
Accepted
11 Apr 2016
First published
13 Apr 2016

RSC Adv., 2016,6, 42334-42346

Role of interfacial interactions to control the extent of wrapping of polymer chains on multi-walled carbon nanotubes

S. Parija and A. R. Bhattacharyya, RSC Adv., 2016, 6, 42334 DOI: 10.1039/C6RA06258J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements