The effect of small pyramid texturing on the enhanced passivation and efficiency of single c-Si solar cells
Abstract
In this work, a simple method to form small random pyramid texturing (0.5–2 μm size) is proposed to enhance the surface passivation of commercial p-type Cz-Si wafers. Small pyramid texturing was generated with chemical nano-masking for anisotropic etching. The surface recombination velocity obtained after the passivation of the thermal oxide layer reduced from 65 and 10 cm s−1 for the large pyramids (10–15 μm size) and small pyramid (0.5–2 μm) texturing respectively. The solar cell fabricated with large pyramid texturing resulted in an efficiency of 17.82% with a current density (JSC) of 36.91 mA cm−2, an open circuit voltage (VOC) of 620 mV whereas small pyramid texturing resulted in an efficiency of 18.5% with JSC of 37.6 mA cm−2 and VOC of 628 mV. The low surface recombination velocity increases the VOC by 8 mV. The small pyramid textured wafers are found to enhance the quantum efficiency performance in both short and long wavelength regions.