Issue 38, 2016

Wavelength-tuneable laser emission from stretchable chiral nematic liquid crystal gels via in situ photopolymerization

Abstract

Stretchable liquid crystal laser gels are free-standing films with emission wavelengths that may be tuned by applying a mechanical strain. These laser gels offer potential for industrial applications such as micro-actuators and pressure sensors due to their small dimensions and suitability for solution processing. Here, we demonstrate examples of such laser gels that comprise multiple regions emitting at different wavelengths, each of which may be reversibly and selectively tuned without measurable hysteresis. These gels are created from a combination of reactive and non-reactive mesogenic molecules using an in situ photo-polymerization technique that is compatible with a variety of commercially available materials and is therefore more versatile than previous methodologies for creating elastomeric liquid crystal lasers. In this paper, we vary the concentration of reactive mesogen and study the corresponding change in the mechanochromic properties of the resulting films. By doping the gels with a fluorescent dye, laser emission that can tuned continuously (by ∼40 nm) upon mechanical extension along a direction that is perpendicular to the helicoidal axis of the chiral nematic liquid crystal phase is observed. Moreover, tuning of the wavelength is found to be reversible and does not exhibit any measurable hysteresis, thereby allowing repeatable selection of a desired laser wavelength by controlling the film elongation. By virtue of the versatility of the technique, it is possible to photo-polymerise different areas of the thin-films at different temperatures to pattern the gels in such a way that different regions of the gel emit at different laser wavelengths.

Graphical abstract: Wavelength-tuneable laser emission from stretchable chiral nematic liquid crystal gels via in situ photopolymerization

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2016
Accepted
21 Mar 2016
First published
24 Mar 2016

RSC Adv., 2016,6, 31919-31924

Wavelength-tuneable laser emission from stretchable chiral nematic liquid crystal gels via in situ photopolymerization

S. M. Wood, F. Castles, S. J. Elston and S. M. Morris, RSC Adv., 2016, 6, 31919 DOI: 10.1039/C6RA05024G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements