Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 47, 2016
Previous Article Next Article

Gadolinium-functionalized nanoparticles for application as magnetic resonance imaging contrast agents via polymerization-induced self-assembly

Author affiliations

Abstract

Polymerization-induced self-assembly (PISA) is an easily applied synthetic technique for the preparation of polymer nanoparticles with various shapes and at high concentrations. Although PISA has been applied to prepare nanoparticles for a variety of different applications, to date there have been no attempts to employ nanoparticles prepared via PISA as a novel platform from which to prepare positive contrast agents for magnetic resonance imaging (MRI). To this end, here we report an efficient synthesis of surface-functional polymer-based nanoparticles with tunable size and morphology (micelles, filomicelles and vesicles) via PISA, their post-synthetic functionalisation and an initial investigation into their use as a positive MRI contrast agent. A short functional block of poly(glycidyl methacrylate) was prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, and this was chain extended with oligo(ethylene glycol) methyl ether methacrylate to create a novel macromolecular chain transfer agent for PISA. A library of surface-functional self-assembled nanoparticles with different shapes was then synthesized, and the versatility of the glycidyl methacrylate units for post-synthetic surface functionalization was demonstrated by ring opening the epoxide with a primary thiol, a primary amine and sodium azide. The resulting azide functional materials could be further modified via copper-catalysed azide–alkyne cycloaddition. The epoxide groups were also exploited to conjugate Gd-DOTA to the polymeric nanoparticles and the application of the diverse polymeric nanoparticles for T1-weighted MRI was investigated, with the filomicelle emerging as a promising candidate due to both a good gadolinium-labelling efficiency and a high T1 relaxivity. Given that filomicelles typically exhibit enhanced blood circulation times, the gadolinium-labelled filomicelles could have potential applications as a blood pool agent for magnetic resonance angiography, and in cancer diagnostics/theranostics.

Graphical abstract: Gadolinium-functionalized nanoparticles for application as magnetic resonance imaging contrast agents via polymerization-induced self-assembly

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Oct 2016, accepted on 08 Nov 2016 and first published on 10 Nov 2016


Article type: Paper
DOI: 10.1039/C6PY01797E
Polym. Chem., 2016,7, 7325-7337

  •   Request permissions

    Gadolinium-functionalized nanoparticles for application as magnetic resonance imaging contrast agents via polymerization-induced self-assembly

    L. Esser, N. P. Truong, B. Karagoz, B. A. Moffat, C. Boyer, J. F. Quinn, M. R. Whittaker and T. P. Davis, Polym. Chem., 2016, 7, 7325
    DOI: 10.1039/C6PY01797E

Search articles by author

Spotlight

Advertisements