Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Herein, we report the synthesis of a new class of traditional fluorophore-free dual pH- and thermo-responsive fluorescent copolymer through sequence-controlled copolymerization of rationally designed monomers. The N-substituted maleimide monomer bearing a diethylene oxide side-chain, (N-(methoxy diethylene glycol) maleimide, M1), was copolymerized with a tert-butyl carbamate (Boc)-protected leucine appended styrenic monomer (M2) to obtain well-defined copolymers with perfectly alternating sequences of M1 and M2. The as-synthesized copolymers displayed bright-blue fluorescence in organic solvents. After Boc-group expulsion, the copolymers showed dual pH- and thermo-responsiveness, they retained their luminescence properties in organic solvents, and also showed pH/thermo-tunable fluorescence activity in water. The origin of the fluorescence in the copolymers was ascertained using density functional theory (DFT), where we observed that the “through-space” π–π interaction between the benzene ring and the neighbouring carbonyl group of the maleimide unit is responsible for the unexpected fluorescence in the alternating copolymer.

Graphical abstract: Conventional fluorophore-free dual pH- and thermo-responsive luminescent alternating copolymer

Page: ^ Top