A composition-controlled cross-linking resin network through rapid visible-light photo-copolymerization†
Abstract
An assembly that delivers well-defined functional materials, clinically practical procedures to make these materials in situ, and appropriate analytical tools for chemical structure and kinetic studies is desirable, though currently unavailable. Herein, we introduce a system that addresses this need through the development and characterization of a cross-linking resin network, which is achieved through rapid, visible-light induced polymerization in a solvent-free environment. This resin network is the result of co-polymerization of a distyrenyl-monomer with a dimethacryl-monomer. Ninety percent of vinyl conversion is achieved in seconds. In addition, an azeotropic composition is identified and confirmed through static end-point evaluation, sol–gel experiment, kinetic study, and mathematical modeling of data acquired via FTIR, real-time Raman and 1H NMR spectroscopies. These results yield opportunities for the design and development of new functional materials to be used in various applications.
Please wait while we load your content...