Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

New macrocyclic hexaoxazole compounds bearing two side chains on an unsymmetrical macrocyclic ring system, i.e., 4,2-L2H2-6OTD (2) and 5,1-L2H2-6OTD (3), were designed as candidate G-quadruplex (G4) ligands and synthesized. These G4 ligands 2 and 3 induced an anti-parallel topology and a hybrid-type topology of telomeric DNA, respectively, in contrast to the previously reported symmetrical macrocycle 3,3-L2H2-6OTD (1), which induces a typical anti-parallel structure. Molecular mechanics calculations and docking studies indicate that these differences arise from the different directions of the side chains in these L2H2-6OTD derivatives, and provide an explanation for the weaker stabilization of telomeric DNA by 2 and 3, compared with 1.

Graphical abstract: Design and synthesis of unsymmetric macrocyclic hexaoxazole compounds with an ability to induce distinct G-quadruplex topologies in telomeric DNA

Page: ^ Top