Issue 6, 2016

Solution-phase synthesis and biological evaluation of triostin A and its analogues

Abstract

Triostin A is a biosynthetic precursor of echinomycin which is one of the most potent hypoxia inducible factor 1 (HIF-1) inhibitors. An improved solution-phase synthesis of triostin A on a preparative scale has been achieved in 17.5% total yield in 13 steps. New analogues of triostin A with various aromatic chromophores, oxidized intra-peptide disulfide bridges and diastereoisomeric cyclic depsipeptide cores were also successfully synthesized. All analogues had a significant inhibitory effect on HIF-1 transcriptional activation in hypoxia and cytotoxicity on MCF-7 cells, with the exception of the derivatives containing a naphthalene chromophore or a thiosulfonate bridge. For the first time, triostin A, echinomycin and the thiosulfinate analogue of triostin A have been revealed to inhibit not only DNA binding of HIF-1 but also HIF-1α protein accumulation in MCF-7 cells. Furthermore, the thiosulfinate analogue and triostin A exhibited a hypoxia-selective cytotoxicity on MCF-7 cells. The improved solution-phase synthetic procedure described herein will contribute to the development of diverse bicyclic depsipeptide drug candidates with the potential to act as novel anti-cancer agents targeting hypoxic tumor microenvironments.

Graphical abstract: Solution-phase synthesis and biological evaluation of triostin A and its analogues

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2015
Accepted
07 Jan 2016
First published
07 Jan 2016

Org. Biomol. Chem., 2016,14, 2090-2111

Author version available

Solution-phase synthesis and biological evaluation of triostin A and its analogues

K. Hattori, K. Koike, K. Okuda, T. Hirayama, M. Ebihara, M. Takenaka and H. Nagasawa, Org. Biomol. Chem., 2016, 14, 2090 DOI: 10.1039/C5OB02505B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements