Issue 47, 2016

From evaporation-induced self-assembly to shear-induced alignment

Abstract

The functionality of compact nanostructured thin films depends critically on the degree of order and hence on the underlying ordering mechanisms during film formation. For dip coating of rigid nanorods the counteracting mechanisms, evaporation-induced self-assembly (EISA) and shear-induced alignment (SIA) have recently been identified as competing ordering mechanisms. Here, we show how to achieve highly ordered and homogeneous thin films by controlling EISA and SIA in dip coating. Therefore we identify the influences of the process parameters including temperature, initial volume fraction and nanorod aspect ratio on evaporation-induced convective flow and externally applied shear forces and evaluate the resulting films. The impact of evaporation and shear can be distinguished by analysing film thickness, surface order and bulk order by careful in situ SAXS, Raman and SEM-based image analysis. For the first time we derive processing guidelines for the controlled application of EISA and SIA towards highly ordered thin nematic films.

Graphical abstract: From evaporation-induced self-assembly to shear-induced alignment

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
06 Nov 2016
First published
08 Nov 2016

Nanoscale, 2016,8, 19882-19893

From evaporation-induced self-assembly to shear-induced alignment

R. Srikantharajah, T. Schindler, I. Landwehr, S. Romeis, T. Unruh and W. Peukert, Nanoscale, 2016, 8, 19882 DOI: 10.1039/C6NR06586D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements