Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 41, 2016
Previous Article Next Article

Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration

Author affiliations

Abstract

Heteroatom doped carbon dots (CDs), with high photoluminescence quantum yield (PLQY), are of keen interest in various applications such as chemical sensors, bio-imaging, electronics, and photovoltaics. Zinc, an important element assisting the electron-transfer process and an essential trace element for cells, is a promising metal dopant for CDs, which could potentially lead to multifunctional CDs. In this contribution, we report a single-step, high efficiency, hydrothermal method to synthesize Zn-doped carbon dots (Zn-CDs) with a superior PLQY. The PLQY and luminescence characteristic of Zn-CDs can be tuned by controlling the precursor ratio, and the surface oxidation in the CDs. Though a few studies have reported metal doped CDs with good PLQY, the as prepared Zn-Cds in the present method exhibited a PLQY up to 32.3%. To the best of our knowledge, there is no report regarding the facile preparation of single metal-doped CDs with a QY more than 30%. Another unique attribute of the Zn-CDs is the high monodispersity and the resultant highly robust excitation-independent luminescence that is stable over a broad range of pH values. Spectroscopic investigations indicated that the superior PLQY and luminescence of Zn-CDs are due to the heteroatom directed, oxidized carbon-based surface passivation. Furthermore, we developed a novel and sensitive biosensor for the detection of hydrogen peroxide and glucose leveraging the robust fluorescence properties of Zn-CDs. Under optimal conditions, Zn-CDs demonstrated high sensitivity and response to hydrogen peroxide and glucose over a wide range of concentrations, with a linear range of 10–80 μM and 5–100 μM, respectively, indicating their great potential as a fluorescent probe for chemical sensing.

Graphical abstract: Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration

Back to tab navigation

Supplementary files

Article information


Submitted
09 Jul 2016
Accepted
22 Sep 2016
First published
22 Sep 2016

Nanoscale, 2016,8, 17919-17927
Article type
Paper

Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration

Q. Xu, Y. Liu, R. Su, L. Cai, B. Li, Y. Zhang, L. Zhang, Y. Wang, Y. Wang, N. Li, X. Gong, Z. Gu, Y. Chen, Y. Tan, C. Dong and T. S. Sreeprasad, Nanoscale, 2016, 8, 17919
DOI: 10.1039/C6NR05434J

Social activity

Search articles by author

Spotlight

Advertisements