Issue 27, 2016

Direct imaging of rotating molecules anchored on graphene

Abstract

There has been significant research interest in controlling and imaging molecular dynamics, such as translational and rotational motions, especially at a single molecular level. Here we applied aberration-corrected transmission electron microscopy (ACTEM) to actuate and directly image the rotational motions of molecules anchored on a single-layer-graphene sheet. Nanometer-sized carbonaceous molecules anchored on graphene provide ideal systems for monitoring rotational motions via ACTEM. We observed the preferential registry of longer molecular axis along graphene zigzag or armchair lattice directions due to the stacking-dependent molecule-graphene energy landscape. The calculated cross section from elastic scattering theory was used to experimentally estimate the rotational energy barriers of molecules on graphene. The observed energy barrier was within the range of 1.5–12 meV per atom, which is in good agreement with previous calculation results. We also performed molecular dynamics simulations, which revealed that the edge atoms of the molecule form stably bonds to graphene defects and can serve as a pivot point for rotational dynamics. Our study demonstrates the versatility of ACTEM for the investigation of molecular dynamics and configuration-dependent energetics at a single molecular level.

Graphical abstract: Direct imaging of rotating molecules anchored on graphene

Supplementary files

Article information

Article type
Communication
Submitted
26 May 2016
Accepted
07 Jun 2016
First published
13 Jun 2016

Nanoscale, 2016,8, 13174-13180

Direct imaging of rotating molecules anchored on graphene

J. Choe, Y. Lee, L. Fang, G. Lee, Z. Bao and K. Kim, Nanoscale, 2016, 8, 13174 DOI: 10.1039/C6NR04251A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements