Issue 24, 2016

High-performance iron oxide nanoparticles for magnetic particle imaging – guided hyperthermia (hMPI)

Abstract

Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).

Graphical abstract: High-performance iron oxide nanoparticles for magnetic particle imaging – guided hyperthermia (hMPI)

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2016
Accepted
15 May 2016
First published
16 May 2016

Nanoscale, 2016,8, 12162-12169

High-performance iron oxide nanoparticles for magnetic particle imaging – guided hyperthermia (hMPI)

L. M. Bauer, S. F. Situ, M. A. Griswold and A. C. S. Samia, Nanoscale, 2016, 8, 12162 DOI: 10.1039/C6NR01877G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements