Issue 12, 2016

Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets

Abstract

Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets.

Graphical abstract: Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2016
Accepted
23 Feb 2016
First published
25 Feb 2016

Nanoscale, 2016,8, 6629-6635

Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets

Q. Wang, L. Wang, Z. Tang, F. Wang, W. Yan, H. Yang, W. Zhou, L. Li, X. Kang and S. Chen, Nanoscale, 2016, 8, 6629 DOI: 10.1039/C6NR00400H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements