Issue 7, 2016

Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires

Abstract

We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. This extensive imaging methodology simultaneously reveals structural, chemical and morphological details of individual nanowires and the adsorbed proteins. We found that the proteins bind to NWs, forming coronas with thicknesses close to the proteins’ hydrodynamic diameters. We could directly image how laminin is extending from the NWs, maximizing the number of proteins bound to the NWs. NWs incubated with both laminin and HSA show protein coronas with a similar appearance to NWs incubated with laminin alone, indicating that the presence of HSA does not affect the laminin conformation on the NWs. In blood plasma, an intermediate sized corona around the NWs indicates a corona with a mixture of plasma proteins. The ability to directly visualize proteins on nanostructures in situ holds great promise for assessing the conformation and thickness of the protein corona, which is key to understanding and predicting the properties of engineered nanomaterials in a biological environment.

Graphical abstract: Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires

Supplementary files

Article information

Article type
Communication
Submitted
14 Dec 2015
Accepted
14 Jan 2016
First published
20 Jan 2016

Nanoscale, 2016,8, 3936-3943

Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires

M. Hjort, M. Bauer, S. Gunnarsson, E. Mårsell, A. A. Zakharov, G. Karlsson, E. Sanfins, C. N. Prinz, R. Wallenberg, T. Cedervall and A. Mikkelsen, Nanoscale, 2016, 8, 3936 DOI: 10.1039/C5NR08888G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements