Issue 8, 2016

Solvent-less method for efficient photocatalytic α-Fe2O3 nanoparticles using macromolecular polymeric precursors

Abstract

We report a method for solvent-less growth of single crystalline hematite Fe2O3 nanoparticles from metal-containing polymeric macromolecular complexes, and demonstrate their efficient photocatalytic degradation of persistent cationic dye pollutants under visible light. Macromolecular complexes such as chitosan·(FeCl2)y, chitosan·(FeCl3)y, PS-co-4-PVP·(FeCl2)y and PS-co-4-PVP·(FeCl3)y with controlled polymer : metal molar ratios of 1 : 1 and 5 : 1 were prepared by single reaction of the respective polymers and iron chloride salts in CH2Cl2. The stable insoluble compounds were characterized by elemental analysis, infra-red spectroscopy, EPR and diffuse reflectance spectroscopy, and confirm Fe salts with degrees of coordination of ∼60–70%. Pyrolysis of these macromolecular precursors under air and at 800 °C forms networked Fe2O3 nanoparticles, whose volumetric density, size and shape is controlled by the metal content and the nature of the macromolecular complex (chitosan or PS-co-4-PVP). For both polymers, the 1 : 1 molar ratio precursor produces nanoparticles ranging from 10–200 nm with a moderate superparamagnetic behavior and optical bandgap marginally larger than bulk Fe2O3. A matrix-incubated formation mechanism involving the carbonization of the organic matter, forming voids within the macromolecular complex wherein the Fe centres coalesce, oxidize and crystallize into nanoparticles is also proposed. The hematite Fe2O3 nanoparticle materials demonstrate very efficient photocatalytic degradation of persistent water pollutants such as the cationic dye methylene blue. The nanoparticulate material obtained from chitosan·(FeCl2)y 1 : 1 under the simulated sunlight (full visible spectrum) irradiation provides high rate degradation of MB by 73% in 60 min and >94% after 150 min, measured at 655 nm.

Graphical abstract: Solvent-less method for efficient photocatalytic α-Fe2O3 nanoparticles using macromolecular polymeric precursors

Supplementary files

Article information

Article type
Paper
Submitted
19 Feb 2016
Accepted
01 Jun 2016
First published
02 Jun 2016

New J. Chem., 2016,40, 6768-6776

Solvent-less method for efficient photocatalytic α-Fe2O3 nanoparticles using macromolecular polymeric precursors

C. Diaz, L. Barrientos, D. Carrillo, J. Valdebenito, M. L. Valenzuela, P. Allende, H. Geaney and C. O'Dwyer, New J. Chem., 2016, 40, 6768 DOI: 10.1039/C6NJ00561F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements