Issue 3, 2016

Injectable peptide hydrogels for controlled-release of opioids

Abstract

Herein, a family of hydrogel-forming peptides was designed starting from the short, tunable and amphipathic hexapeptide hydrogelator H-Phe-Glu-Phe-Gln-Phe-Lys-OH (1). The hydrophobic side chains as well as the nature of both N- and C-termini were modified in order to obtain suitable gelation conditions and drug release profiles for in vivo application. To potentially increase the enzymatic stability, an all-D analogue was prepared as well. After their macroscopic and microscopic characterization by rheology and transmission electron microscopy (TEM) analysis, opioid drugs were encapsulated into the hydrogels and sustained release experiments were carried out. Hydrogel toxicity was assessed in cell viability assays. Based on the physicochemical, mechanical, and noncytotoxic properties, H-Phe-Glu-Phe-Gln-Phe-Lys-NH2 (2) was further investigated for in vivo release of morphine. The antinociceptive effects following subcutaneous injection of the morphine-containing hydrogel 2 was evaluated in a model of thermal nociception using the mouse tail-flick test. Sustained antinociceptive effects over extended periods of time (up to 24 h) for morphine co-formulated with hydrogel 2, compared to morphine injection in solution (effects up to 2 h), were observed.

Graphical abstract: Injectable peptide hydrogels for controlled-release of opioids

Article information

Article type
Research Article
Submitted
30 Sep 2015
Accepted
02 Dec 2015
First published
17 Feb 2016

Med. Chem. Commun., 2016,7, 542-549

Injectable peptide hydrogels for controlled-release of opioids

C. Martin, E. Oyen, J. Mangelschots, M. Bibian, T. Ben Haddou, J. Andrade, J. Gardiner, B. Van Mele, A. Madder, R. Hoogenboom, M. Spetea and S. Ballet, Med. Chem. Commun., 2016, 7, 542 DOI: 10.1039/C5MD00440C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements