Issue 20, 2016

Multiplex SNP genotyping in whole blood using an integrated microfluidic lab-on-a-chip

Abstract

Pharmacogenetics has often been touted as a cornerstone for precision medicine as detailed knowledge of a specific genetic makeup may allow for accurate predictions of a patient's individual drug response. Still, the widespread use of genetic tests is limited as they remain expensive and cumbersome, requiring sophisticated tools and highly trained personnel. In order for pharmacogenetics to reach its full potential, more cost-effective and easily accessible genotyping methods are desired. To meet these challenges, we present a silicon-based integrated microsystem for the detection of multiple single nucleotide polymorphisms (SNPs) directly from human blood. The device combines a blood lysis chamber, a cross-flow filter, a T-junction mixer, and a microreactor for quantitative polymerase chain reaction (qPCR). Using this device, successful on-chip genotyping of two clinically relevant SNPs in human CYP2C9 gene was demonstrated with TaqMan assays, starting from blood. The two SNPs were detected simultaneously by introducing a sequence of plugs, each containing a different set of primers and probes. The method can be easily extended to detect several SNPs. The microsystem described here offers a rapid, reproducible, and accurate sample-to-answer technology enabling multiplex SNP profiling in point-of-care settings, bringing pharmacogenetics-based precision medicine a step closer to reality.

Graphical abstract: Multiplex SNP genotyping in whole blood using an integrated microfluidic lab-on-a-chip

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
09 Sep 2016
First published
09 Sep 2016

Lab Chip, 2016,16, 4012-4019

Multiplex SNP genotyping in whole blood using an integrated microfluidic lab-on-a-chip

L. Zhang, Q. Cai, R. S. Wiederkehr, M. Fauvart, P. Fiorini, B. Majeed, M. Tsukuda, T. Matsuno and T. Stakenborg, Lab Chip, 2016, 16, 4012 DOI: 10.1039/C6LC01046F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements