Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Microarray technology was developed in the early 1990s to measure the transcription levels of thousands of genes in parallel. The basic premise of high-density arraying has since been expanded to create cell microarrays. Cells on chip are powerful experimental tools for high-throughput and multiplex screening of samples or cellular functions. Miniaturization increases assay throughput while reducing both reagent consumption and cell population heterogeneity effect, making these systems attractive for a wide range of assays, from drug discovery to toxicology, stem cell research and therapy. It is usual to functionalize the surface of a substrate to design cell microarrays. One form of cell microarrays, the transfected cell microarray, wherein plasmid DNA or siRNA spotted on the surface of a substrate is reverse-transfected locally into adherent cells, has become a standard tool for parallel cell-based analysis. With the advent of technology, cells can also be directly spotted onto functionalized surfaces using robotic fluid-dispensing devices or printed directly on bio-ink material. We are providing herein an overview of the latest developments in optical cell microarrays allowing high-throughput and high-content analysis.

Graphical abstract: Multiplex cell microarrays for high-throughput screening

Page: ^ Top