Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 18, 2016
Previous Article Next Article

Virtual membrane for filtration of particles using surface acoustic waves (SAW)

Author affiliations


Surface acoustic wave (SAW) based particle manipulation is contactless, versatile, non-invasive and biocompatible making it useful for biological studies and diagnostic technologies. In this work, we present a sensitive particle sorting system, termed the virtual membrane, in which a periodic acoustic field with a wavelength on the order of particle dimensions permits size-selective filtration. Polystyrene particles that are larger than approximately 0.3 times the acoustic half-wavelength experience a force repelling them from the acoustic field. If the particle size is such that, at a given acoustic power and flow velocity, this repulsive force is dominant over the drag force, these particles will be prohibited from progressing further downstream (i.e. filtered), while smaller particles will be able to pass through the force field along the pressure nodes (akin to a filter's pores). Using this mechanism, we demonstrate high size selectivity using a standing SAW generated by opposing sets of focused interdigital transducers (FIDTs). The use of FIDTs permits the generation of a highly localized standing wave field, here used for filtration in μl min−1 order flow rates at 10s of mW of applied power. Specifically, we demonstrate the filtration of 8 μm particles from 5 μm particles and 10.36 μm particles from 7.0 μm and 5.0 μm particles, using high frequency SAW at 258 MHz, 192.5 MHz, and 129.5 MHz, respectively.

Graphical abstract: Virtual membrane for filtration of particles using surface acoustic waves (SAW)

Back to tab navigation

Article information

03 May 2016
18 Jul 2016
First published
18 Jul 2016

Lab Chip, 2016,16, 3515-3523
Article type
Author version available

Virtual membrane for filtration of particles using surface acoustic waves (SAW)

A. Fakhfouri, C. Devendran, D. J. Collins, Y. Ai and A. Neild, Lab Chip, 2016, 16, 3515
DOI: 10.1039/C6LC00590J

Social activity

Search articles by author