Jump to main content
Jump to site search

Issue 16, 2016
Previous Article Next Article

Onset of particle trapping and release via acoustic bubbles

Author affiliations

Abstract

Trapping and sorting of micro-sized objects is one important application of lab on a chip devices, with the use of acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force (FSR) on micro-particles and stabilize them on the bubble surface, when this radiation force exceeds the external hydrodynamic forces that act to keep the particles in motion. While the theoretical expression of FSR has been derived by Nyborg decades ago, no direct experimental validation of this force has been performed, and the relationship between FSR and the bubble's ability to trap particles in a given lab on a chip device remains largely empirical. In order to quantify the connection between the bubble oscillation and the resultant FSR, we experimentally measure the amplitude of bubble oscillations that give rise to FSR and observe the trapping and release of a single microsphere in the presence of the mean flow at the corresponding acoustic parameters using an acoustofluidic device. By combining well-developed theories that connect bubble oscillations to the acoustic actuation, we derive the expression for the critical input voltage that leads to particle release into the flow, in good agreement with the experiments.

Graphical abstract: Onset of particle trapping and release via acoustic bubbles

Back to tab navigation

Article information


Submitted
19 Nov 2015
Accepted
12 Jan 2016
First published
12 Jan 2016

Lab Chip, 2016,16, 3024-3032
Article type
Paper

Onset of particle trapping and release via acoustic bubbles

Y. Chen, Z. Fang, B. Merritt, D. Strack, J. Xu and S. Lee, Lab Chip, 2016, 16, 3024
DOI: 10.1039/C5LC01420D

Social activity

Search articles by author

Spotlight

Advertisements