Structure of the Ru, Ag and Te L X-ray emission spectra
Abstract
The emission of X-rays in atomic transitions from L-shell vacancy states of Ru, Ag and Te induced by electron incidence was studied. To this end, L X-ray spectra were measured with a wavelength dispersive spectrometer, and processed by a parameter optimization method previously developed. A large set of atomic parameters corresponding to diagram transitions, such as relative transition probabilities, characteristic energies and natural linewidths of the three elements, were determined. The results obtained are compared to the data found in the literature, when available. In general terms a good agreement was observed, supporting recent calculations based on the framework of the relativistic many-body problem in atoms. Spectral structures related to satellite and radiative Auger emissions were also analyzed, and energy shifts and relative intensities were determined. Many of these parameters were determined for the first time, which was possible due to the robustness of the spectral processing method used, even in the cases of peak overlapping and weak transitions.