Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2016
Previous Article Next Article

Template-assisted extrusion of biopolymer nanofibers under physiological conditions

Author affiliations

Abstract

Biomedical applications ranging from tissue engineering to drug delivery systems require versatile biomaterials based on the scalable and tunable production of biopolymer nanofibers under physiological conditions. These requirements can be successfully met by a novel extrusion process through nanoporous aluminum oxide templates, which is presented in this study. With this simple method we are able to control the nanofiber diameter by chosing the size of the nanopores and the concentration of the biopolymer feed solution. Nanofiber assembly into different hierarchical fiber arrangements can be achieved with a wide variety of different proteins ranging from the intracellular proteins actin, α-actinin and myosin to the extracellular matrix components collagen, fibronectin, fibrinogen, elastin and laminin. The extrusion of nanofibers can even be applied to the polysaccharides hyaluronan, chitosan and chondroitin sulphate. Moreover, blends of different proteins or proteins and polysaccharides can be extruded into composite nanofibers. With these features our template-assisted extrusion process will lead to new avenues in the development of nanofibrous biomaterials.

Graphical abstract: Template-assisted extrusion of biopolymer nanofibers under physiological conditions

Back to tab navigation

Supplementary files

Article information


Submitted
24 Mar 2016
Accepted
17 Jul 2016
First published
18 Jul 2016

This article is Open Access

Integr. Biol., 2016,8, 1059-1066
Article type
Paper

Search articles by author

Spotlight

Advertisements