Issue 10, 2016

Evaluation of sulfur spinel compounds for multivalent battery cathode applications

Abstract

The rapid growth of portable consumer electronics and electric vehicles demands new battery technologies with greater energy stored at a reduced cost. Energy storage solutions based on multivalent metals, such as Mg, could significantly increase the energy density as compared to lithium-ion based technology. In this paper, we employ density functional theory calculations to systematically evaluate the performance, such as thermodynamic stability, ion diffusivity and voltage, of a group of 3d transition-metal sulfur-spinel compounds (21 in total) for multivalent cathode applications. Based on our calculations, Cr2S4, Ti2S4 and Mn2S4 spinel compounds exhibit improved Mg2+ mobility (diffusion activation energy <650 meV) relative to their oxide counterparts, however the improved mobility comes at the expense of lower voltage and thereby lower theoretical specific energy. Ca2+ intercalating into Cr2S4 spinel exhibits a low diffusion activation barrier of 500 meV and a voltage of ∼2 V, revealing a potential cathode for use in Ca rechargeable batteries.

Graphical abstract: Evaluation of sulfur spinel compounds for multivalent battery cathode applications

Article information

Article type
Paper
Submitted
16 Jun 2016
Accepted
17 Aug 2016
First published
17 Aug 2016

Energy Environ. Sci., 2016,9, 3201-3209

Author version available

Evaluation of sulfur spinel compounds for multivalent battery cathode applications

M. Liu, A. Jain, Z. Rong, X. Qu, P. Canepa, R. Malik, G. Ceder and K. A. Persson, Energy Environ. Sci., 2016, 9, 3201 DOI: 10.1039/C6EE01731B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements