Issue 4, 2016

Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes

Abstract

Metal-halide based perovskite solar cells have rapidly emerged as a promising alternative to traditional inorganic and thin-film photovoltaics. Although charge transport layers are used on either side of perovskite absorber layers to extract photogenerated electrons and holes, the time scales for charge extraction and recombination are poorly understood. Ideal charge transport layers should facilitate large discrepancies between charge extraction and recombination rates. Here, we demonstrate that highly enriched semiconducting single-walled carbon nanotube (SWCNT) films enable rapid (sub-picosecond) hole extraction from a prototypical perovskite absorber layer and extremely slow back-transfer and recombination (hundreds of microseconds). The energetically narrow and distinct spectroscopic signatures for charges within these SWCNT thin films enables the unambiguous temporal tracking of each charge carrier with time-resolved spectroscopies covering many decades of time. The efficient hole extraction by the SWCNT layer also improves electron extraction by the compact titanium dioxide electron transport layer, which should reduce charge accumulation at each critical interface. Finally, we demonstrate that the use of thin interface layers of semiconducting single-walled carbon nanotubes between the perovskite absorber layer and a prototypical hole transport layer improves device efficiency and stability, and reduces hysteresis.

Graphical abstract: Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2015
Accepted
08 Feb 2016
First published
08 Feb 2016

Energy Environ. Sci., 2016,9, 1439-1449

Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes

R. Ihly, A. Dowgiallo, M. Yang, P. Schulz, N. J. Stanton, O. G. Reid, A. J. Ferguson, K. Zhu, J. J. Berry and J. L. Blackburn, Energy Environ. Sci., 2016, 9, 1439 DOI: 10.1039/C5EE03806E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements