Issue 2, 2016

Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting

Abstract

Developing cost-effective electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in basic media is critical to renewable energy conversion technologies. Here, we report a ternary hybrid that is constructed by in situ growth of cobalt selenide (Co0.85Se) nanosheets vertically oriented on electrochemically exfoliated graphene foil, with subsequent deposition of NiFe layered-double-hydroxide by a hydrothermal treatment. The resulting 3D hierarchical hybrid, possessing a high surface area of 156 m2 g−1 and strong coupling effect, exhibits excellent catalytic activity for OER, which only requires overpotentials of 1.50 and 1.51 V to attain current densities of 150 and 250 mA cm−2, respectively. These overpotentials are much lower than those reported for other non-noble-metal materials and Ir/C catalysts. The hybrid also efficiently catalyzes HER in base with a current density of 10 mA cm−2 at an overpotential of −0.26 V. Most importantly, we achieve a current density of 20 mA cm−2 at 1.71 V by using the 3D hybrid as both a cathode and an anode for overall water splitting, which is well comparable to the integrated performance of Pt/C and Ir/C catalysts.

Graphical abstract: Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting

Supplementary files

Article information

Article type
Communication
Submitted
11 Nov 2015
Accepted
23 Dec 2015
First published
24 Dec 2015
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2016,9, 478-483

Author version available

Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting

Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, Energy Environ. Sci., 2016, 9, 478 DOI: 10.1039/C5EE03440J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements