Issue 3, 2016

CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity?

Abstract

Carbon dioxide conversion and utilization has gained significant interest over the years. A novel gas conversion technique with great potential in this area is plasma technology. A lot of research has already been performed, but mostly on pure gases. In reality, N2 will always be an important impurity in effluent gases. Therefore, we performed an extensive combined experimental and computational study on the effect of N2 in the range of 1–98% on CO2 splitting in dielectric barrier discharge (DBD) plasma. The presence of up to 50% N2 in the mixture barely influences the effective (or overall) CO2 conversion and energy efficiency, because the N2 metastable molecules enhance the absolute CO2 conversion, and this compensates for the lower CO2 fraction in the mixture. Higher N2 fractions, however, cause a drop in the CO2 conversion and energy efficiency. Moreover, in the entire CO2/N2 mixing ratio, several harmful compounds, i.e., N2O and NOx compounds, are produced in the range of several 100 ppm. The reaction pathways for the formation of these compounds are explained based on a kinetic analysis, which allows proposing solutions on how to prevent the formation of these harmful compounds.

Graphical abstract: CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity?

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
29 Oct 2015
Accepted
11 Dec 2015
First published
15 Dec 2015

Energy Environ. Sci., 2016,9, 999-1011

CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity?

R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts and A. Bogaerts, Energy Environ. Sci., 2016, 9, 999 DOI: 10.1039/C5EE03304G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements