Issue 2, 2016

XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

Abstract

Limited resource availability and population growth have motivated interest in harvesting valuable metals from unconventional reserves, but developing selective adsorbents for this task requires structural knowledge of metal binding environments. Amidoxime polymers have been identified as the most promising platform for large-scale extraction of uranium from seawater. However, despite more than 30 years of research, the uranyl coordination environment on these adsorbents has not been positively identified. We report the first XAFS investigation of polyamidoxime-bound uranyl, with EXAFS fits suggesting a cooperative chelating model, rather than the tridentate or η2 motifs proposed by small molecule and computational studies. Samples exposed to environmental seawater also display a feature consistent with a μ2-oxo-bridged transition metal in the uranyl coordination sphere, suggesting in situ formation of a specific binding site or mineralization of uranium on the polymer surface. These unexpected findings challenge several long-held assumptions and have significant implications for development of polymer adsorbents with high selectivity.

Graphical abstract: XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

Supplementary files

Article information

Article type
Communication
Submitted
21 Sep 2015
Accepted
12 Nov 2015
First published
12 Nov 2015

Energy Environ. Sci., 2016,9, 448-453

Author version available

XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

C. W. Abney, R. T. Mayes, M. Piechowicz, Z. Lin, V. S. Bryantsev, G. M. Veith, S. Dai and W. Lin, Energy Environ. Sci., 2016, 9, 448 DOI: 10.1039/C5EE02913A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements